对话“阿凡题”创始人:要怎样才算是一个“教
你可能对“互联网教育”这个概念已经听的有些厌烦了。的确,在互联网教育领域,尤其是K12领域,尽管风口已经被说了无数遍,可是“风”到现在却还没到。一个又一个的教育产品要不就是过于空泛得不到家长欢迎,要么就仅仅是把原有的概念用互联网包装一下,真正有价值的东西屈指可数。
现在看,真正受到市场上欢迎的,反而是具有浓重的应试教育色彩的“做题类应用”。但是这一类的产品也引起了很多争议:其一,它几乎是在鼓励学生抄答案。其二,它从另外一个方面,似乎也让“题海战术”愈演愈烈。
“阿凡题”是一家深耕于教育产品的创业公司,在此前,他们为人所知的是通过深度学习,对于图片题目的超高识别率。但“阿凡题”创始人陈李江却告诉我,“拍照搜题”已经不再是他们的目标。他们现在的目标是:像Uber 配置司机一样,为每个有疑惑的学生配置一名最专业的教师。并且以此入手,了解每个学生的个性化需求,改变“千人一面”的教育状况,真正重构教育。
听上去很宏大,但这是不是又是一个利用“XX的Uber”进行的炒作?搜题与打车这两个看上去风马牛不相及的需求,又有哪些相似之处?以下是我们的对话实录:
PingWest:我看你们的产品说明里面,给我的印象是强调“一对一辅导”,但是这其实上已经是个比较旧的概念了。
陈李江:我们这个概念抛出来之后很多人只会看到“一对一”,其实我们重点并不在强调“一对一”,而是“即时辅导”。我们强调这两个字“即时”,学生需要的时候,它就马上可以出现,这是Uber模式的本质——按需服务。所以你可以把它叫做“教育界的Uber”。
PingWest:但是有个区别,“即时”对于要打车的人肯定是非常重要的。在教育里面,真的是一个非常重要的因素吗?再说,你们能够有多即时呢?
陈李江:当然重要。我举个例子,我们在用户调查中发现一个有意思的情况:不是学生不想学习,其实很多学生哪怕是差生,也有那么一刹那间很想学习。但是他想学习的时候却常常无法学习。我们去学校调研,我们问学生:上了这节课你有什么听不懂的地方没有?90%的学生都说没有,但一旦回去做作业你会发现问题就大了,一堆的作业不会做,学生自己也不明白。其实,学生需要辅导是周一到周五晚上做作业的时刻,但是辅导的时间却经常是他想玩的周末。这就是我们提出“即时”的意义,我们要在30秒之内找到能帮你的老师,这是别人做不到的。
PingWest:30秒?包括晚上?
陈李江:基本能说是24小时,因为到下半夜了需求小,但老师也有夜猫子,满足需求是没问题的。
PingWest:那你们会辅导学生多长时间?
陈李江:每次的辅导基本在5分钟左右,长的大概在10分钟左右。这是我们辅导的特性,就是点到为止。接下去该看书看书,该睡觉睡觉,该玩玩。按需服务,点到为止。这是我们跟别家最大的不同。
PingWest:但老师跟开车毕竟是不一样,司机去哪都是一样,老师要备课,他怎么能无预备情况下在5分钟之内突然看到一道题,就把它讲得很好呢?
陈李江:首先我们面试的都是一线教师,他们每天在一线工作,接触很多学生的问题,所以他们能够在很短时间内判断这道题他懂不懂、会不会、能不能做。在这些老师中,我们也会在筛选机制上选出那些优秀到可以做即时服务的教师。
题目也有分类,简单题和常见题,好老师一分钟就能解决。而真正有一定难度的题,可能老师需要一定的思考过程。但阿凡题最大的服务是机器识别,也就是人工智能的方式。所以老师讲解过程中,虽然遇到难题、新题可能会卡住,但阿凡题的搜索和题库已有的信息不仅可以帮到学生,还可以帮到老师。所以老师在给学生讲这些辅导的时候,也会有信息参考,目前包括对题的解析以及题目的分析过程等,这样能让老师讲得更好一点,提高他讲解的质量。
最后,我们还会积累学生的信息。很多老师可能第一次遇见学生,并不了解这个学生以前的学业情况。这就是我们的机会,但当我们有足够多的数据,系统就可以马上把这些信息反馈给老师,我们用新的技术和数据帮助老师最快速地反应、最快速地实现个性化教学。
PingWest:一般我们都习惯了教育最好是一个持续的过程,如果每次老师都不同,如何保持教育和思路的持续性?
陈李江:我们的系统里也考虑到这个问题,对比我们自己跟Uber的时候我们发现教学的过程跟你在线下找出租车有很大的不同。教学是个长期的过程,而且学生一旦认定一个老师,就不愿意再换。所以在我们的系统里,我们跟竞品很大的区别就是允许学生“收藏”一个老师,或者帮助他们形成一定的粉丝关系。这有点像微博里面粉丝跟大V之间的关系,你可以关注老师,提问的时候可以定向提问,可以跟他约好什么时候辅导。一旦粉丝关系形成之后,学生对一个老师会慢慢产生依赖,你会看到学生会时不时地@这个老师,甚至经常@这个老师,这样他们就形成固定关系。
PingWest:那最初我怎么知道一个老师好与不好?靠专家团?还是纯粹靠用户评论?但用户评论,毕竟它跟打车不太一样,它是主观的,存在差异性。你又不能把每个老师的录音都听一遍,你怎么做到最好的评价方式?
陈李江:专家组这些人一定是喜好符合平均价值观的,他教出来的往往是千人一面的那种“好老师”。但是学生状态不一样,需求不同,我们更愿意放在用户这端来决定。
PingWest:用户怎么决定?他们看到的是随机的老师。
陈李江:随机才有很多可能性。现在是随机,学生和老师的数据我们还没有充分用起来,但如果用起来之后我们就知道一个老师的讲课风格是什么样的,一个学生自己的情况是什么样的。因为推荐算法很成熟,智能匹配能让我们为学生推荐更多适合他的老师。
PingWest:那智能匹配怎么做到呢?老师和学生怎么通过数据来操作?
陈李江:分两个部分。一部分来自老师给学生的评价,这个评价里老师会给学生打上各种各样的标签。譬如说他在学习表现上到底属于中、好、还是差,他对知识点的掌握水平等等。此外用户行为也会提供很多数据。比如年级、学科,甚至他性格的特质。随着学生找老师次数的增多,这个数据会越来越精准,长期以往就会有大数据。